o BRI

E R
R EE

dddaaan

7
=
i

=

1.2¢
=

AR

ROYAL SIGNALS AND RADAR ESTABLISHMENT
Report No 87004

Title:
Public Tool Interfaces for Software Development Environments
Authors:
M.Stanley, N.E.Peeling and 1.F.Currie
Date:
September 1987

- Summary

This report looks at the problems of defining a portable public tools
interface to underpin the software tools needed for the development
and maintenance of software systems. It proposes a requirement
specification and gives the rationale behind the proposed
requirements. The rationale also suggests some facilities and
implementation features to enable the requirement to be met. It
indicates that the requirement is not necessarily over ambitious.

~
AY

Accession For

NTIS GRAXL
ITIC TAB

© Unannounced O y
Justification 7

)

Jayry
. SPECTED
R + BY. e
Copyr ight i
py° o _Distributlon/
Controller HMSO London Availablility Codes
1987 ' ‘Avatl and/op
Dist | Special

Cim

|

W S .

RSRE REPORT 870606\
Public Too! Interfaces for Software Development Environments
M.Stanley, N.E.Peeling and I.F.Currie

CONTENTS

1.
2.

3.

Introduction
Documentation for a PTI
Figure 1 Documentation
PTI requirements specification
.1. Mandatory and optional requirements
. Scope
. Partitioning
. Completeness
. Portability of the PTI
. Tool Reuseability and Interworking
. Database
.8. Extensibility
. Orthogonality
18. Homogeneity
.11, Performance
.12, Integrity
. Security
.14, Robustness.
15. Portability of tools
.16. Interoperability
.17. User interface
.18. Interactive working
.19. Multi-tasking
.28. Mixed language working
.21. Uniformity
.22. Distribution.
.23. Established technology
.24%. Technological compatibility
.25. PTI validation
Figure 2 A PT] based PSE- the layers

CONDNFWN -

ARAR AR AN AR AN ARAEARREANARANA YA EAR AN AR FAFARANARAGA
-
w

{continued...)

RSRE REPORT 87606%
Public Tool Interfaces for Software Development Environments

M.Stanley, N.E.Peeling and 1.F.Currie

CONTENTS {(continued)

4. Rationale for the requirement
4.1. Different levels of facility
4%.2. Scope
4.3. Partitioning
4.4, Completeness
4.5. Portability of the PTI
4.5.1. Underlying operating system
4.5.2. Unix
%.6. Tool Reuseability and Interworking
4.7. Database
4.8. Extensibility
4.8.1. New tools and privi'ege
k.8.2. New PTI aperations
4.9. Orthogonality
18. Homogeneity
11. Performance
.12, Integrity
. 13. Security
.14, Robustness.
.15, Portability of tools
.16, Interoperability
.17. User interface
. Interactive working
.19. Multi-tasking
.208. Mixed language working
21. Uniformity
.22. Distribution.
23. Established technology
.2%. Technological compatibilijty
.25. PTI validation
4.26. Kernel facilities
5. Conclusion
6. Acknowledgements
7. References
8. Glossary

FFFFFFFFTFFFFres
-
o©

RSRE REPORT 87004
Public Tool Interfaces for Software Development Environments
M.Stanley, N.E.Peeling and I.F.Currie

1. Introduction

1.1. There is a move in the computing community towards defining and
producing a portable public tools interface (PTl) to support a wide
range of tools needed for software development and maintenance. The
notion of a standard PTI is attractive. Eventually it is hoped to agree
an international standard PTl. Given a really good standard interface
available on a wide variety of different machines, tool writers
should be able to produce tools that use the interface, confident that
their market was not restricted to specific hardware users.
Furthermore, project managers should more easily be able to tailor
their tool kit to the needs of the project.

1.2. A PT!] is in essence an operating system without the utilities
(tools) such as compilers, command line interpreters, editors,
loaders and file management software that are usually deemed to be
part of an operating system. The facilities of a PT] are provided as a
set of procedure calls (in appropriate languages) that can be
incorporated in user supplied tools. The PTI may include more
facilities than a8 standard operating system. For example the
interface may include a database system such as PCTE OMS (ref &),
not normally provided by an operating system. A tool is here deemed
to be a program or set of programs, working on the interface,
available for use by more than one user of the interface. Programs
working on the interface but restricted to use by the program
developer are deemed to be application programs.

2. Documentation for a PTI

2.1. Several initiatives are attempting to define the requirements of
a PTI. They include (see glossary) the RAC (already available from
DoD)(ref 3); the NRAC (a NATO equivalent of the RAC, from the NATO
study group known as the TSGCEE SWG on Ada/APSE); the EURAC (a
European equivalent of the RAC, from a combined NATO
industry/military group called IEPG) and possibly others.

2.2. The documentation needed to support a PTI is shown
schematically in Figure 1. In order to engender a common
understanding among funding bodies, developers and users of a PTI
about what a PTI really is, a short requirements document is needed.
This will identify the mandatory and desired characteristics of a PTI.
The requirement must not include statements on the way in which the
objectives will be met nor identify the detailed facilities needed.

2.3. The requirements document should be supported by a rationale
document. The rationale will indicate the reasons for the
requirements. It will elucidate the underlying concepts. It will also

| e

increase confidence that the requirements are realistic by including
suggestions on facilities and implementation features which could
enable the PTI to meet the requirements. The suggestions in the
rationale would not be mandatory. They would expand on the
requirement, explaining the assumptions underlying the requirement
and the implications that follow from the requirement.

2.4. A separate facilities specification should define the facilities
chosen to meet the requirement, such as transactions to support
integrity, or an entity relationship database to support the
expression of relationships and data tvpes. The facilities
specification may also address any non- functional features necessary
to achieving the requirement, such as data representation. If it is
decided, in the interests of economy or speed of implementation, that
the requirement need not be met in full, then the facilities
specification should indicate where the requirement has been
relaxed. A rationale document justifying the choice of facilities to
meet the requirement should support the facilities specification,

2.5. The facilities specification should be followed by an
implementation specification. This will indicate the actual procedure
calls, with syntax and semantics, needed to provide the facilities,
plus any necessary detail of things like data representation to be
used by all implementations.

2.6. The requirements of a PT] should be identified by considering
the full range of needs of tool writers and tool users over a very
wide range of different types of software tool. It is vital to avoid
falling into the trap of specifying requirements by looking at
facilities and working out what requirement they meet. It is also
important to avoid restricting the requirements to those that can be
met by facilities already available in some operating system,
prototype PTl or existing PTIl plus perhaps a minimum set of further
facilities needed to satisfy the needs of specific user communities
such as the military. Such an approach would, in the longer term, be
counterproductive. A PTl would easily be produced which satisfied
the stated requirements but which did not actually provide the
features necessary to a successful PTl. Even if it is decided, for
political or economic reasons, that it is not desirable in the short
term to meet the full PTI requirement, the requirement will provide a
useful yardstick against which PT] developments can be measured.

2.7. It is not envisaged that objective tests as to whether a PTI
meets the requirement would be feasible. A PTI implementation would
not be tested against the requirement. There would need to be
subjective judgement on the extent to which the facilities
specification matched up to the requirement. More precision would be
possible in identifying the extent to which the implementation
specification provided all the facilities in the facilities

specification. Validation of implementations could be made only
against the implementation specification.

Figure 1 Documentation

requirements spec:] characteristics of PT]

—a
Irequnrements rationale

v
facilities spec.I facilities needed to provide characteristics

... (subjective judgement that they satisfy
... the requirement)

A
Ecilities rationale]

v

implementation spec. (formal)

syntax and semantics to provide facilities

(subjective judgement that they provide
all facilities)

Ivalidation spec.
conformance § tests for PTI implementations
Ivalidation suite

\i

I'El'l implementations |

{use validation suite for objective tests
of conformity to implementation spec.)

——» derived from ... » explanation and justification

3. A PTI requirements specification

The authors recognise the difficulty of writing a requirements
specification. This section and the next section are an attempt to
define the first two documents, the requirements specification and
the rationale for the requirements. The requirements listed here are
those identified as important by the authors both as a result of their
own experience in developing and maintaining software and as a result
of the research on software development environments carried out at
RSRE. Work on the Flex PSE (ref 12) and the Ten15 abstract machine
(ref 29), both developed by RSRE, has been particularly relevant.
Other important influences have been the work on software
development environments and on tool interfaces carried out under
the ESPRIT programme (e.g. the development of PCTE (ref 4)), the
requirements work sponsored by IEPG on the EURAC and related work in
the CAD community (ref 9).

3.1. Mandatory and optional requirements

In this document 'shall’ indicates a mandatory requirement, 'should’
indicates a desirable but not mandatory requirement. Bracketed
comments in this section belong more properly in the rationale but
are included to make the requirement more readable.

3.2. Scope

The PTI shall provide facilities to support software tools for the
development and maintenance of both large and small software
systems, including development and maintenance of real-time
software systems and systems which will run on a target machine
which does not support the PTI. The PT! should support as wide a
range of software systems as possible.

3.3. Partitioning

3.3.1. The PTI shall be partitioned in such a way that the partitions
operate independently and may be understood independently. There
shall be no undocumented dependencies between partitions. It shall be
possible to install the PTI without those partitions that are not
required by the tools to be supported at that installation.

3.3.2. If the PTI provides both high and low level facilities it shall
police the use of any low level facilities to ensure that their use
does not compromise the protection enforced by higher level
facilities (e.g. preventing the use of filestore manipulations to
destroy a database).

3.4. Completeness

3.4.1. The PTI shall provide a complete set of facilities such that
most tools do not need to access facilities outside those of the PTI
in order to carry out their function without compromising other
requirements (such as performance and integrity). (It is desirable
that any tool shall be implementable using the PTI.)

(X

3.4.2. If the PTI provides high level facilities (such as a database)
the lower level facilities needed to implement them shall also be
accessible to tool writers.

3.4.3. The set of facilities shall be complete in the sense that PTI
operations shall form a closure. (i.e. it shall not be possible to
compose two or more PTl operations to create an operation which is
not valid in the PTI. For example if the PTl were to impose a
constraint on the number of files used by a single operation then an
operation resulting from the composition of two operations might
break the constraint.)

3.5. Portability of the PTl

The PTI shall be capable of implementation on a variety of different
machines and system architectures, including bare machines and a
variety of operating systems. The PTI shall be designed so that
re-implementation or a different machine or system architecture,
without compromising other requirements, involves the minimum of
re-writing. :

3.6. Too] Reuseability and Interworking

3.6.1. It shall be possible for a tool or application to accept
arbitrarily complex data structures and to write arbitrarily complex
data structures both to and from long term storage. It shall also be
possible for a tool or application to communicate arbitrarily complex
data structures to another tool without involving long term storage.

3.6.2. It shall be possible for the PTI to check that a tool is applied
to or accepts data only if the data has the appropriate structure.

3.6.3. The data structures expressible in the PTI shall be compatible
with the data types of the languages supported by the PTI.

3.6.4. Any tools whose interfaces match shall be composeable to
create new tools. The resulting tools shall be composeable with
other tools in the same way. The PTI shall be able to check that the
interfaces between the tools match.

3.7. Database

3.7.1. The PT! shall provide sufficient facilities to support a
database suitable for the efficient storage and manipulation of any
granularity of data (fine or coarse grain) and in which relationships
between data objects can be expressed.

3.7.2. A database shall be provided that permits expression of
relationships between values. It shall support description of the
structure of data objects held in long term storage which is
compatible with the data structures provided for checking the
correct use of tools.

3.8. Extensibility

3.8.1. It shall be possible to introduce new tools to work on the PT]
without the need for privilege. Adding a tool to the environment
means making the tool available for use by more than one user of the
environment.

3.8.2. It shall be possible to compose PTI operations to create new
operations efficiently without the need for privilege. It shall be
possible to introduce new PTI operations as necessary.

3.9. Orthogonality

3.9.1. The PTI facilities shall be orthogonal. This implies the aim
that the facilities shall provide a complete but minimal set of
primitives which can easily be composed to provide higher level more
application-specific features. It also implies the aim that the basic
facilities shall be mutually independent (i.e. changes in the
definition of one basic facility shall not imply changes to any other
basic facility.) "Special cases” in the definition should be kept to an
absolute minimum. All facilities shall be available in all contexts.

3.108. Homogeneity

The PTl implementation specification shall, as far as possible,
provide a homogeneous interface in the sense that the way in which
the interface procedures handle input and output parameters, delivery
of results, data types and failures or exceptions shall follow defined
conventions.

3.11. Performance

The PTI facilities shall not provide significantly worse performance
than provided by existing operating systems. Use of the PT! shall not
markedly degrade the performance of existing tool sets. 1t shall be
possible to write new tool sets working on the PTI which exhibit
similar performance to that which would be achieved using
conventional operating systems.

3.12. Integrity

The PT! shall provide integrity in the sense that it will not permit
normal opecrations on inconsistent data in filestore, mainstore or
across a network. In the event that a failure might result in loss of
consistency, the PTI shall ensure that the filestore is returnable to a
consistent state (if necessary by returning to an earlier state).

3.13. Security

The PT! shall exhibit the integrity of filestore, of, running programs
and of the network necessary to implement a security policy, either
military or civil.

3.14. Robustness.

The PTI shall be designed in such a way as to isolate, (as far as
possible) errors and their consequences, to control errors and to
recover from them where possible.

3.15. Portability of tools

1t shall be possible to run any tool implemented on the PT| on any
implementation of the PTI that provides the necessary hardware.

3.16. Interoperabllity

The PTI shall support the transfer of data and data structures from
one implementation of the PTI to another.

3.17. User interface

The PTl shall provide facilities for tools to communicate with
bit-mapped workstations, to support tools such as command line
interpreters, editors and graphics tools.

3.18. Interactive working

The PTI shall provide facilities for the highly interactive use of
tools in the sense that any tool can invoke any other in an
unanticipated way without significant performance penalties.

3.18. Multi-tasking

An executable object (tool or procedure) that is being executed is
called a process. A process comes into being when it is activated.
The PTI shall provide facilities for processes to run concurrently.
The facilities shall support synchronisation of concurrent processes
and safe sharing of structured data without compromising integrity.
The PTI shall provide facilities for mutual exclusion and for control
and termination of processes both by the invoking process and by
independent processes.

3.28. Mixed langusge working

The PTI shall be programming language independent. It shall permit
the interworking of tools written in different languages. It shall also
support mixed language working within tools (e.g. tools written in
Ada but using C procedures and vice versa) to the extent that the
types within the languages are compatible.

3.21. Uniformity

The PTI shall provide a uniform, language independent representation
of data. (For example so that a debugger can be developed to work
with procedures in any language).

3.22. Distribution.

The PTI shall be capable of working across a distributed network of
dissimilar workstations, mainframes and file servers. It shall

provide facilities to enable integrity across the distributed network
to be maintained. It should be possible to implement these facilities
without allowing failure of a part of the network to deny service to
any other part of the network which does not directly access the part
that has failed. (This implies a mechanism for performing remote
actions, facilities to support a distributed commit across the
network and facilities for a resilient lock mechanism across the
network).

3.23. Established technology
The PTI shall contain only features which have been demonstrated in
existing commercial or military software systems.

3.24. Technological compatibility
The PTI shall adopt existing standards where applicable.

3.25. PTI validation

There shall be a formal definition of the implementation
specification of .the PTI. Implementations of the PTI should be
validated using procedures derived from the formal specification.

Figure 2 A PT1 based PSE- the layers.

_.8pplication programs (developed using tools)

s..
tools = shared programs providing facilities

e.g. compilers, editors, loaders
command interpreters, documentation t
configuration management tools,

ools

| 4
i? special high performance tools
: {shared programs)
; : e.g. program analysis Lools
i large databases

e.g. ERA database procedures,
fine-grained database procedures

distribution, parallel processing

higher level PTI facilities/ procedures

data types, common data representation

L]
kernel PTI facilities/ operations
e.g. direct interaction with filestore
atomic commit operations
mainstore sharing, dynamic linking
access control facilities,
|parallel processing,inter process communication
remote procedure calls, resilient locking

underlying hardware R&\o..vobowmz:m system

—» implemented in terms of PTI

» applications may call tools or PT1 .., only kernel calls 0/S
? not sure if applications may cail kernel

A PTI based PSE - the layers

Figure 2

k. Retionale for the requirement

This section gives the rationale for each individual PTI requirement,
preceded by a discussion on the different levels of facility in a PT].
It ends with suggestions on the lower level facilities needed to
support the requirements.

4.1. Different levels of facility

k.1.1. Although some of the requirements for the PTI imply the
provision of high level facilities such as a database, it will be shown
that others imply the accessibility of a low leve! kernel.

4.1.2. A kernel of low level facilities is necessary to satisfy the
requirement to use only established technology. The experimental
work needed to demonstrate the viability of a software support
system that provides only high level facilities has not been done.
Work is underway to implement some tools on PCTE (the PACT project)
but care is needed in evaluating the results. Unless tools expected to
be difficult to implement on PCTE are included in the project, (e.g.
Ella, see the rationale for the database), successful tool
implementation may still fail to provide the required demonstration.

4+.1.3. If a database or some similar high level interface is the
lowest level of interface provided, it is likely that we will
eventually find some flaw that we have not yet identified and that
cannot be circumvented without a lower level kernel. No set of higher
level facilities can be guaranteed to provide for all the needs of tool
writers. Any essential facility omitted from the higher levels must
be implementable in terms of kernel facilities should the need arise.

t.1.%. As well as being necessary for the completeness of a PTI, the
need for a kernel is a unifying thread that solves many of the
problems in other requirements. This section is included to
demonstrate the power of this unifying concept even though it
trespasses on many of the following sections.

+.1.5. While accessible low level facilities are essential to a PTI
kerne! they do not preclude provision of a variety of higher level
facilities, such as a database, implemented in terms of the kernel.
The PTI kernel should be the minimum set of primitives needed to run
the system and to allow efficient and safe interaction with filestore,
with other processes and with other devices. Most tool writers
would probably choose to use only the higher levels, with the
additional protection and facilities provided.

&.1.6. It is vital for the health of the PTI tha* the set of kernel
facilities be correctly identified and carefully implemented. Higher
level facilities may be added as the PTI evolves but the full set of
kernel facilities is needed to facilitate development of the higher
levels as well as for tool development. The last subsection in this

10

rationale discusses the choice of kernel facilities. Much of the rest
of the rationale is concerned with higher level facilities.

k.1.7. It might be argued that the provision of kernel facilities that
allow a user to bypass the higher level facilities such as the
database will make security and integrity provision harder. For
example, the database interface will no longer have control of
filestore allocation and access control. However, the kernel might
still police the filestore allocation while giving users the right to
request specific allocation. If the regions of filestore to which a
tool writer has direct access were either disjoint from regions used
by the higher level facilities or wholly contained within some higher
level structure then there need be no loss of integrity and security.
Against the risk of diminished security resulting from bypassing
higher level PT] facilities must be set the consideration that, should
tool writers find it impossible to implement high integrity, high
performance tools using the higher levels and should they also be
denied the necessary facilities at the kernel level then they will
bypass the PTI entirely. They may be driven to implementing the tools
on the underlying operating system thus preventing any part of the PT]
from controlling or even checking their use of filestore or other
system facilities.

%+.1.8. It has been argued that the protection of filestore accessed by
high level facilities from corruption by the kernel will prevent
intertool communication. It is accepted that tools written using the
kernel may not directly share data with tools implemented using
dastabase facilities. It will. however, be possible to write tools to
transform the results of low level operations to a form suitable for
ingertion in the database. Other tools might take data from the
database and provide it to tools that use low level facilities.

+.1.9. It has also been argued that a kernel of low level facilities
must hinder tool portability. There is no reason why most of the low
level facilities should not have the same syntax and semantics on the
various different machine architectures. Most machine architectures
provide essesntially similar facilities for mapping onto the hardware.
Machine dependencies can be encapsulated as constants supplied as
parameters. While it is always possible for programmers to write
non-portable software, the skilled tool writer (an unskilled
programmer will probably not choose to use kerne! facilities) will
ensure the portability of his tools by the use of parameters for all
machine dependent constants.

%.2. Scope

%.2.1. The main aim of a PT] is the cheap provision of as wide a range
of software tools as possible. A PTI suitable for the support of
software tools must provide facilities for calling tools from other

11

tools, and for communication between tools and between a tool and
the underlying computing hardware.

4.2.2. While the PTI must provide facilities for communication
between tools and users, it is not clear whether login and logout or
any standard way (command language or menu) for users to call tools
or to give commands to the operating system, should be part of a PTI.
It would be too constraining to define a single command mechanism but
guidelines indicating a recommended method of connecting to a PTI
based system, with the form of access controls to be imposed etc.
are probably advisable.

4.2.3. The facilities specification needs to consider what extra
facilities, if any, will be needed for host/target software
development, for example to allow a developer to monitor processes
running in a target which may not support the PTI.

&.3. Partitioning

Partitioning the PTl and implementing it as a kernel plus a set of
higher level facilities is not subsetting. All the PTl facilities,
including all the higher level facilities, would be mandatory for
conformance, in the sense that every PTI implementation must provide
them. A partition would be optional only in the sense that the tool
writer could use a PTl without those parts he does not need, secure
in the knowledge that all the PTI packages he chooses to use will still
work. If the partitions are independent an individual installation of
the PTI might choose not to provide a partition (such as a database
4.3.1. package) that is not needed by the tools to be installed. The
software would still exist and could be provided if needed at a later
date. For example, an installation on a single processor would not
need to include facilities for distribution.

4.%. Completeness

4.4.1. The PTI needs to be complete in the sense that no necessary
facilities are omitted. A PTI which did not provide the full range of
facilities might have to coexist with tools which bypass it, with all
the problems that result from coexistence.

&.4.2. Current operating systems are an established technology
providing a kernel of low level facilities from which the full range
of higher levels can be built. As already indicated, the paucity of
experience of PTIs based only on higher level facilities makes it
improbable that all necessary facilities will be remembered at the
higher levels. If a forgotten facility may only implementable in terms
of the high level facilities by compomising other raquirements such
as efficiency. Access to low level facilities will then be essential.
Users will be tempted to circumvent a PTI that fails to provide the
flexibility and level of facilities needed to enable tool writers to
provide performance, integrity, security and data checking. (This

12

e

—— e —

may well involve facilities for tailoring a tool for specific hardware
or operating systems.)

4.4.3. A major objective for a PTI is the cheap provision of tools
working on the interface. Conversion of existing tools to work on the
PTl is therefore desirable. This supports the argument for a low
level kernel. Unless the PTI provides facilities similar to those used
in the current tool interface to the operating system on which the
tool runs, tool conversion could involve a radical redesign to fit the
tool to the different form of interface. It could prove difficult or
costly to convert existing useful tools to work on a new form of
interface. Conversion of existing tools to a PT| may degrade
performance or integrity to an unacceptable degree unless an
appropriate set of low level] facilities, such as provided by current
operating systems, is accessible.

k.b.%. A PTl needs to be capable of growth if it is to adapt to
changing software development methods and ideas. It should allow the
addition of new operations as required. If the PTI operations do not
form a closure it will be possible to violate the rules for the PTI by
combining operations each of which is individually valid. The
flexibility and orthogonality needed to encourage growth will be lost.
It will only be safe to combine operations in certain contexts. Users
will hesitate to combine operations if the resulting operation might
fail.

&.5. Portability of the PTI
%.5.1. Underlying operating system

&.5.1.1. PTI implementations need to be relatively portable to ensure
wide availability without incurring undue expense.

4.5.1.2. A PTI may be implemented either on a bare machine or on top
of a basic underlying operating system or on top of an operating
system supplemented by some facilities implemented on the bare
machine. [f the PTI is implemented on top of an operating system then
the operating system must provide all the basic facilities defined for
the PTI. Any facilities that cannot be provided directly as operating
system facilities must be provided indirectly in terms of operating
system facilities. Should the underlying operating system be unable
to provide directly or indirectly for some PTI facility then that
facility must be implemented on the bare machine, (bypassing the
operating system). For example, if the PTI is to be implemented on an
operating system (such as Unix) which does not provide facilities for
preserving the necessary levels of performance and integrity in the
use of filestore, nor for dynamic linking (refs 19, 28 and 21) then
the operating system will need extension. The quality of a PTI
implemented on top of an operating system, and the quality of the
tools it supports, is bounded by the quality of the underlying
operating system. All operating system facilities used to support the

13

L

PT! must therefore exhibit the required integrity and performance.
The operating system must be bypassed or extended in those cases
where the operating system falls short.

4+.5.1.3. A PTI should be portable in the sense that it should be
possible to move implementations of the PTl to different computer
hardware or to different underlying operating systems with a minimum
of effort. If a PTI were fully implementable in terms of the
primitives of a portable operating system then portability of the PTI
to different computer hardware could in a sense be achieved by
portability of the underlying operating system. Such a PTI will not be
fully portable in that it will not necessarily be feasible to move it to
other operating systems except by providing an additional layer in
which the specified operating system primitives are implemented on
top of the host operating system, which would probably impact
performance.

.5.1.%. Implementation of a relatively portable PTI on a bare machine
would be possible by isolating the machine dependent parts and by the
use of parameters for machine dependent features such as disc
sector size.

4+.5.1.5. In order that the higher level facilities of a PTI be portable
they should be implemented in terms of the kernel. The kernel
facilities should be specified and designed to be as independent as
possible of any specific operating system characteristics. A kernel
that relies on characteristics peculiar to a particular operating
system will be more difficult to move to other operating systems.

+.5.1.6. Too close an association between the PT] specification and a
particular underlying operating system can also give rise to a
problem that has nothing to do with portability. The problem is
control of the PTI specification. The specification of a PT] defined in
terms of specific operating system primitives may change as a result
of upgrades to the operating system. This could lead to problems
because the PTl specification could effectively be changed without
warning by the operating system suppliers.

4.5.2. Unix

4+.5.2.1. The wide availability and easy portability of Unix would
clearly enhance the availability of any PTI based on Unix. It is
therefore worth considering the desirability of specifying a PTI
suitable for implementation on top of Unix.

4.5.2.2. A PTi defined for easy implementation on any specific
operating system will probably be inefficient when implemented on
other operating systems. Unix is no exception. Similarly, it will be
difficult to control the specification of a PTl whose definition is too
closely associated with a specific operating system. Unix is again no

1%

exception. Should the PTI definition be closely associated with Unix
it will be necessary to sort out consequences of changes to Unix
definitions and of the development of Posix (a Unix based operating
system being promoted in the USA as a possible Unix standard).

&.5.2.3. Unix is not an ideal operating system on which to implement a
PTI. It was created as a laboratory research vehicle. It was not
designed as a commercial operating system. It has recognised
shortcomings that have been widely reported (refs 1,2,5,6 and 13).
Any PTl implemented on an operating system with these shortcomings
may provide all specified functions but will fail to satisfy other PTI
requirements such as performance, security or integrity. The authors
of Unix do not believe it is possible to add the required
characteristics as a boit on extra (refs 1 and 2 and 5).

4.5.2.4. Many of the problems associated with Unix are probably a
result of specific implementation features rather than being inherent
in the specification of Unix (ref 6). Other problems are associated
with the lack in Unix of those low level facilities need to support
dynamic linking and those necessary to enable interactions with
filestore to be provided with integrity and performance. It is
important to consider the minimal set of changes and extensions
(including possible changes to the implementations) necessary to
make Unix an acceptable underlying operating system for a PTI.

4.5.2.5. In addition to the extensions needed to augment Unix with
low level facilities, possible extensions to enable the undesirable
features of Unix to be bypassed (for example bypassing the cache
when necessary) should be considered.

4.5.2.6. A Unix look-alike reimplemented to solve the problems
properly by avoiding the specific implementation features which make
Unix undesirable could probably be achieved. However, a Unix
look-alike which did not do things such as filestore handling in the
same way as the ATAT software is unlikely to be recognised as
'proper’ Unix. Problems might be experienced in importing Unix tools
if the semantics of the operating system changed as a result of
reimplementation. Reimplementation of Unix may well prove
uneconomic. The kernel extensions would still be needed.

4.5.2.7. Bearing in mind the above comments, some evaluation should
be made of the cost effectiveness of a PTI based on a modified and
extended Unix.

&.6. Tool Reuseability and Interworking

4.6.1. The requirement for tool interworking and safe tool
composition implies support for data structure definition by the PTI
and for long term storage of structured data on filestore. Data

15

structure definition is appropriate to the higher levels of a PTI (e.qg.
a database). It is not applicable at the kernel level.

+.6.2. A PTI aimed at cheap provision of tools should encourage users
to fit existing tools together in new ways to achieve new objectives.
If primitive tools are expected to work correctly together to provide
a more complex function, it is vital that any interface between tools
(i.e the data provided by one tool to another) be understood in the
same way by both tools. If the data output by tool A will be
misinterpreted if input to tool B, then it should not be possible to
compose too!l A with tool B. Most current operating systems support
only unsafe tool composition in that there are no safeguards that
prevent a receiving tool from picking up data with implicit structure,
A, and assuming a totally different implicit structure, B, with
unpredictable results. Tools and applications are expected to make
their own interpretation of the hidden structure in a file or pipe. For
example, a tool may output a byte stream with implicit structure
A:(boolean,integer, date, real number, character string) which will
be input to another tool in the set. A third tool may expect a byte
stream with implicit structure B:(integer, date, date, boolean,
character string). If a tool picks up structure A when expecting
structure B, it will misinterpret the data with unpredictable and
sometimes unnoticed consequences.

4.6.3. Data structuring provides facilities to define and to use data
structures not only within individual programs but for communication
between programs and for long term retention of data. A PTI should,
at the higher levels, permit a user to define the structure of the
bulk of the data associated with an object such as a file, pipe or
message so that the structure can be checked by the receiving tool. A
tool cannot check the structure of data that has no explicit
structure. If implicitly structured data is transmitted from tool to
tool via the unstructured content of files, messages and pipes, it can
be shared correctly only if the tools are written with foreknowledge
of the structure.

k.6.4. The set of basic value types provided in the higher levels of a
PTI must include all types necessary to normal data usage (refs 10
and 2¢), including real numbers. It is not, however, sufficient to
define value types only for the more primitive values (attributes)
associated with an object. The data typing system must also have the
flexibility to allow tool writers to define arbitrary data structures
to allow definition and use of the internal structure of data
sssociated with bulk objects (such as file content). Users must
therefore be able to compose their own vaiue types (whose
structures are compositions of a set of basic types) using type
constructors such as vectors, references, cartesian product etc.
Flexible use of arbitrarily small user defined data structures
requires facilities to support fine granularity. (Note: abstract data
types, where a type is defined not only by its structure but also by

16

the operations that can be performed on it are discussed under
security.)

4.6.5. A value type should alvways have the same set of valid
operations whether it appears on its own or as a part of some larger
more complex structure. For example the operations on a boolean
value should be the same whether the value is an element in a vector
of booleans or a value on its own. The higher levels of the PT] should
cause an exception or a program failure if an invalid operation is
invoked on a value type (for example operating on a boolean field as
if it were an integer). It is not sufficient to provide type
information without also providing facilities to ensure that a tool
writer does not ignore the information, for example using a date as
an integer and performing arithmetic on it.

+.6.6. A tool writer should not only be able to define an arbitrary
structure for data written to filestore or sent in messages or pipes
to other tools, he should also be able to return (to the calling tool)
an arbitrarily complex structure as a result of calling the tool or to
pass an arbitrarily complex structure to another tool running
concurrently. If results of tool execution are restricted to simple
structures such as status values then filestore may have to be used
unnecessarily to pass data from one tool to another. A tool returning
an arbitrary data structure should be composeable with any other tool
that requires that structure of data as input, without the
performance penalty of writing the structure to filestore or into a
message. There should be no need to predefine what tool will operate
on the data next.

4.6.7. Not only should the PT] higher levels retain information on the
structure of data but they should also aim to prevent programs or PTi
operations from operating on values, objects or relationships of the
wrong type. If a tool is to be prevented from operating on a wrong
data type then the data type of the input and output parameters of a
tool must explicitly be associated with the tool itself. An executable
object in the PTlI must therefore define the data type of the
parameters of the executable object and of the results, so that type
checking of program calls can be performed. Programs called on the
wrong parameter type should fail. The data structures expressible in
the PT! therefore need to be compatible with the data types of the
languages supported by the PTI.

&.7. Detabase

%.7.1. It is commonly held that a PTl shpuld include some form of
database to enable the expression of relationships between objects.
This would clearly be useful both for configuration management (for
example identifying related components and versions of a product)
and for tools such as program analysis tools needing to express
relationships between fine grained objects. Note that the requirement

17

does not call for the database to be distributed. This is because the
requirement for a distributed database would be at odds with a
requirement to use only established technoiogy. The authors are not
aware of any existing military or commercial distributed database
possessing both the required performance and the required integrity.

4.7.2. The form which a database supporting a PTI should take is not
entirely clear. No single form of database can be appropriate for all
tools. For example, it would be difficult to implement the database
kernel of a tool such as Ella (refs 7 and 8) using only high level
facilities such as PCTE1.%+ OMS without destroying Ella’'s claims to
both bhigh integrity and high performance. (Ella on BSD&.2 Unix
requires use of the fsync function to clear the buffers. It is
difficult to see how to manage without it.) There is a valid argument
for defining, as part of the PT!, a variety of different higher level
interface sets appropriate to different types of tool. Provided that
the PTI kernel provides sufficient low level facilities for
introduction of alternative styles of database it is relatively
unimportant that the selected style of database may not be an
appropriate data model for some tools. The aim should be to select a
form or forms of database which will adequately support a wide
variety of tools.

4.7.3. An entity relationship database has been suggested as the most
appropriate model for a wide range of tools. This may conflict with
the requirement to use only a technology that has actually been used
in real systems. Although entity relationship databases do exist the
authors know of none that have been shown to exhibit the necessary
integrity, performance and portability.

k.7.4%. A database based on files as the unit of granularity will not be
suitable for tools needing efficient access to fine grained data. Such
tools include the Adam database (ref 7), any fine-grained database or
persistent heap, tools to do with program analysis, verification and
theorem proving, which need to represent expressions on filestore,
often with links to other small structures, details of wvariables,
parts of specifications etc. A fine grained data store would also be
useful for program sharing, where the separately compiled units to
be shared may be very small.

4.7.5. One application for which a PTI must provide support is
configuration management. The database facilities selected should
therefore be suitable for implementation of & configuration
management system. To increase confidence that the correct
facilities had been selected the rationale for the facilities
specification should perhaps include an illustrated example of how
the proposed facilities might be used. They might, for example, show
how the proposed facilities could ensure that, given a program or a
compiled unit, it would always be possible to reach the source text

18

from which it derived, with no possibility of ever mistakenly
accessing an earlier or later version of the source text.

4.7.6. Since any software development system must expect to create
quite a large amount of transient filestore values the PTI will need to
provide facilities for filestore garbage collection. This is a very
difficult problem jif the PTI supports 8 cyclic database scanning
several distinct filestore volumes.

&.8. Extensibility

%.8.1. New tools and privilege

4.8.1.1. Adding a new tool to an environment based upon the PTI
involves making the tool available for use by more than one user of
the environment. Unless it is easy to do this the toolset will not
grow freely. If privilege is needed to add a new tool then there will
be a temptation to distribute privilege more widely than would be
compatible with the enforcement of security.

4.8.1.2. It is desirable that multiple invocations of a tool shall not
cause mulitiple copies of the executable code toc be loaded. This is
particularly important if the tool code is large or is likely to be
widely used. It should therefore be possible, without privilege, to
make the executable code of a tool re-entrant and shareable between
different users

&.8.2. New PTI aperations

4.8.2.1. A system that cannot evolve will not continue in use. It must
be possible to augment the PTI, evolving higher levels of PTI
facilities after the initial definition and implementation. To evolve
new facilities it will be necessary to compose existing operations to
create new ones without unnecessary performance penalties. Tool
writers will wish to create new operations from existing PTI
operations or facilities.

4.8.2.2. For efficient composition of PTI operations the higher
levels of the PTI should include ‘operation’ as a data type, with the
data type of its input and output parameters. The set of PTI
operations should not be totally defined by the set of procedure calls
provided. If there is no way within t~k¢ PTI of describing an object
which is an operation then the sequence of existing operations which
define a new operation must be interpreted rather than compiled. One
camnot take advantage of the a priori knowledge of the structure of an
object derived from an operation when applying the subsequent
operation. One must check the structure agein on input to each
operation in the sequence. This has really dire effects on efficiency
- the difference between interpretation and compilation in normal
languages is a good analogy.

».8.2.3. It may be that a need for a new PT| operation that cannot be

19

created by composition of existing operations will be recognised. It
must be possible to augment the PTI to include such an operation. It
is not possible to be certain that all necessary operations will be
identified at the outset.

&.9. Orthogonality

4.9.1. If the primitive operations provided by the PTI are complete
and if PTI operations can be efficiently composed then there is no
reason why the PTl cannot be extended to support higher level
facilities as the need arises and the technology develops. The basic
set of facilities should be minimal and orthogonal (mutually
independent) in order to to assist the designer in keeping the basic
PT] simple, small and relatively easy to develop and to maintain. Any
departure from orthogonality will give problems in maintenance as
well as in use.

4.9.2. If certain facilities are available only in appropriate contexts
then the PTI will be difficult to use. Tool writers will need to
remember different rules for correct use of each operation and will
therefore be more liable to make mistakes. It will be more difficult
to provide tools to enforce or assist correct useage of operations if
the rules vary according to context.

&.10. Homogeneity

If a homogeneous interface is provided in which all PTI procedures
adopt similar conventions (as far as the supported languages allow)
then it will be easier for tool writers to learn and to apply the
procedures correctly in a variety of contexts.

&.11. Performance

b.11.1. Ref 1% indicates the importance of performance in a PTI. If
the performance of a set of tools working on a PT! is significantly
worse than the performance of simjlar tools provided without using
the PTI then the PTl tools might be rejected by those parts of the
user community for whom performance is a high priorityv. Performance
is a difficult issue. Degraded performance of an individual tool may
be acceptable provided the overall performance of the tool user in
achieving his objective is not impaired. However if individual tools
are perceived to give significantly worse performance than
comparable tools in other environments it is likely that the overall
performance will be deemed unacceptable.

%.11.2. There may be difficulties with the performance of high level
facilities arising from the specification o0f the facilities
themselves. Tools based on the higher level PT] facilities such as a
database may be prepared to trade performance in order to use
improved facilities but tool writers must be permitted to forego the
additional facilities in order to achieve a better performance.

20

4.11.3. A tool writer needs a good mapping to the underlying machine
architecture if he is to provide high performance tools. This
confirms the necessity of a kernel of low level facilities.
(Experience with standard interfaces in the CAD field supports this
view, see ref 9. While a software development PT! may not be
intended to support CAD tools we should learn from the experience of
the CAD community in attempting their own PTI and from the problems
they encountered, particularly with respect to the implementation of
large databases.)

&.12. Integrity

k.12.1. Integrity is breached if incorrect operation of the system
due to a software or a hardware failure results in users being given
access to values to which they have no right or to incorrect values
either in mainstore or filestore. Filestore integrity is breached if a
system or software crash results in corruption of the filestore or
database so that users are presented either with no value for an
existing file or database object or (worse) with a wrong value. This
is undesirable, and can be disastrous in critical applications.

4.12.2. Of particular concern is the integrity of the filestore
following either a hardware or a software failure. Integrity of
filestore data manipulated by the low level PTI facilities must be the
responsibility of the tool writer. The low level kerne!l must
therefore provide sufficient facilities to enable integrity to be
enforced.

4.12.3. The low level facilities must not be able to compromise the
protection provided by higher level facilities. Users of high level
PT! facilities have a right to expect that the integrity of the
database or filestore will be maintained without the need for
individual applications to check the integrity of the objects and their
relationships. The higher levels of the PTI should not take the risk
of relying on tool writers either to protect the integrity of filestore
or to minimise the risk of filestore corruptior. A tool writer who
chooses to ignore his responsibility for the integrity of his data
might otherwise cause corruption of data needed by other tools. Any
filestore corruption that can occur should be detected and recovered
from. The PTI facilities specification needs to indicate how integrity
will be maintained by the higher level facilities in the event of a
hardware or software failure, how loss of integrity will be detected
and how recovery will be achieved. It is also important to specify
how the PT] will prevent use of kernel facilities from resulting in
corruption of high level data. As far as is feasible, higher level
objects should be inaccessible using the kernel facilities. This
should be enforced.

k.12.%. A number of established technologies exist for implementing
filestore integrity. The usual solution is to use a 'un-do/re-do’ log.

21

——— B ad

This provides integrity facilities with an inevitable, but usually
acceptable, decrease in performance, since every filestore update
must be accompanied by a log update, also on filestore. Alternatively,
tools may copy everything before starting a set of transactions, work
on the copy and finally rename it as a unitary operation. This is of
dubious value with large databases. (It was tolerable in SDS (refs 16
and 17) and on George 3 for up to about 2 megabytes.) Another
possible solution to the problem of filestore integrity is to make the
filestore non-overwriting except for the facility to overwrite a root
pointer as an atomic operation (as in Flex (refs 11 and 12) and Adam
(ref 7)).

4.13. Security

+.13.1. Security is breached if a user can illegally access or make
unauthorised use of anything on filestore, in mainstore or across a
network.

4+.13.2. Access controls are a means of controlling and policing
access. They need to be sufficiently flexible to permit sharing of
objects between .users and between tools where desirable without
weakening the ability to exclude access to objects where necessary.
It is probably the case that any operating system needs a very
restricted set of highly privileged operations which may enabie the
user to violate normal access controls. However, it is vital for
security that access to privileged operations be properly restricted.
The PTI should not rely on access controls provided by an operating
system which does not adequately prevent access to a privileged
state.

4.13.3. If operations which a user may legitimately wish to perform
{for example making code shareable between different executable
programs) can be achieved only from a privileged state then privilege
will be more widely distributed than is advisable, with consequential
reduction in system security. Any tool writer may wish to make his
code shareable by other users or tools. The PTI should therefore aim
to provide for code sharing without the need for privilege.

k.13.%. Abstract data typing (i.e. definition of an object type by the
set of programs or operations that can operate it (refs 18 and 24))
assists in the provision of security. Access to an object of a given
type can be policed by the operations and programs that can operate
on the object type. Any operations applied to the type but not defined
for it should fail. Tool writers using the higher level PTI facilities
should be able to define new abstract data types, together with the
set of programs that can access them. (For flexibility there must
also be an operation on the abstract data type to enable a user to
extend the set of valid operations for the type.) The same set of
operations should be associated with the abstract data type whether
it appears on its own or as a part of some larger more complex

22

— e —— —— —

structure. For example the operations on a stack should be the same
whether the stack is an object on its own or part of a larger object.
It should be possible to define identical structures as distinct types,
possibly associated with different operations and programs.

4.13.5. Integrity and security are closely linked. Abstract data tvpes
are very useful not only for security but also for integrity. Integrit\
is an essential prerequisite in the provision of security since
corruption of data may invalidate any access controls.

k. 1%. Robustness.

4.14%.1. A PTI designed to isolate errors and their consequences needs
to detect incorrect use of the facilities as early as possible.
Enforcement of correct use of data types by including the type of the
parameters of operations and of tools as part of the tool or operation
will assist in this. A uniform method of dealing with program failure
will also assist. Partitioning the facilities will help to prevent
accidental communication between different parts of the PTI.

4.14.2. It is important not only that any attempt to use PTI operations
or tools incorrectly should fail, but also that the program or tool
which invoked a failed operation should be unable to proceed in
ignorance of the failure. Ignoring a failure should be a conscious
decision on the part of the tool writer. It should not be possible to
ignore a failure simply by omission of a status check. Failed PTI
operations should not rely on return of a status report to indicate
failure.

%.14.3. Tools to handle program failure, either in tools or in
application programs, are essential for software development and
maintenance. The facilities specification of the PTI needs to discuss
how failures will be handled and how diagnostic tools will gain
access to information about program failures. A common method of
handling failures would remove the need for different debuggers for
each language. The facilities specification should indicate whether
handling of program failures will be the province of individual
implementors of tools such as the compilers and loaders (and
therefore language dependent) or whether a common method of
bandling program failures will be supported, shareable by all
languages. A common data representation would assist in the
provision of a common method for handling failures.

&.15. Portability of tools)

4.15.1. In order that tools shall be portable between implementations
of the PTl it is vital that there are no ambiguities in the
specification nor gaps which would permit different valid
implementations to behave differently or an implementation to behave
differently if supported by a different underlying machine. This

23

re-enforces the importance of a validation procedure backed up by a
formal implementation specification of the PTI.

4.15.2. It must be possible to ensure that a tool or application can be
run only if the required facilities (e.g. screen size, graphics
facilities, communications facilities, store size etc) are available.
Facilities are therefore needed to interrogate the machine on which
the PT! is working to discover what is available and to select
appropriate parameter values (such as disc sector size) to tailor the
tool to the underlying hardware. It would probably te useful to be
able retain information as to the needs of a tool as part of an
executable object.

4.15.3. One obstacle to tool portability will be implementation of
real numbers, and of integers unless the number of bits in an integer
is specified. A common data representation would assist in tool
portability.

&.16. Interoperability

It is desirable -not only that tools be portable between PTI
implementations but that data should also be transferable. This
implies not only the transfer of individual data items but also the
preservation of relationships between the items, and the
preservation of any structural and data type information associated
with the items. This is similar to the requirement that data be
transferable between dissimilar workstations on a network supported
by the PTI. A common form of data representation supported by any
necessary tranformation tools to deal with differences in word length
is probably essential if this requirement is to be met.

&.17. User interface

Users need to interact with tools. Facilities for user interaction
must to be part of the PTI to ensure that tools that interact with the
user are portable to different user terminals and different PTI
implementations. More research is needed on precisely what
facilities are required for the user interface and what kinds of
terminals should be supported. Users will expect to interact with
tools through bit-mapped workstations and facilities are also needed
for graphics tools. It may be difficult in this area to find an
established technology. There are as yet no recognised standards for
user interfaces although X-windows (ref 15) may be an evolving
standard.

& 18. Interactive working

4.18.1. The PTI is required to support the highly interactive use of
tools in the sense that any tool can invoke any other in an
unanticipated way without significant performance penalties. There is
considerable evidence of high user acceptance of interactive
programming support environments in which the user can arbitrarily

24

choose to connect different tools together as dictated by the
problem on which he is working. Flexible work patterns improve
programmmer performance. The popularity of Smalltalk and of LISP
environments is in part due to the highly interactive and flexible
user interface. Both these environments are more than usually
interactive.

+.18.2. Consider a user who calls a tool that delivers a result. The
user may then wish to call some arbitrary tool to enable him to
examine or process the result in some unanticipated way. He does not
necessarily wish to have the result, which may be of only passing
interest, automatically written to filestore for input to the next
tool. Writing temporary data to filestore imposes performance
penalties and consumes filestore unnecessarily. Unanticipated use of
tools implies the ability to pass results to some arbitrary tool
without the unnecessary degradation in performance caused by writing
shared data to filestore.

4.18.3. Suppliers of tools such as command line interpreters cannot
be expected to anticipate all the ways in which users will wish to
call tools from one another. Facilities are needed to allow tools to
call other tools as selected at run time by the tool user. Dyvnamic
linking is essential if command line interpreters are to support
unanticipated use of tools and inclusion of new tools as they become
available, without the performance penalty of spawning a new process
for every tool call. It is also important for efficient use of
mainstore and for high performance tools. Dynamic linking is the
ability to load modules at run time. Dynamic linking is probably a
major factor in the popularity of the MAINSAIL programming
language(refs 19 and 31). Systems without dynamic linking form a
program into a single executable image in which all tools that can be
directly invoked (i.e without spawning a new process) are linked into
the program image before the program can run. Other tools may be
invoked by spawning a separate process but spawning is an inefficient
method of unanticipated tool invocation compared with direct too!l
invocation. Performance is often poor because the system has to copy
the complete image when spawning a new process. It is usually
necessary to use virtual memory and memory mapping to share code,
which may slow down execution. Code can often be made shareable by
a superuser, but this reduces security by invoking privilege when it
should not be necessary. It is not usually possible for a spawned
process to share mainstore data with the spawning process other than
very simple data such as status flags or integer values.

k.19. Multi-tasking

+.19.1. The ability to run processes concurrently, to control
concurrent processes and to provide for communication between them
is necessary for the conversion of some existing tools to the PTI
(for example, those that communicate with slow peripherals).

25

Concurrent processing and support for asynchronous communication
between processes is needed for efficient communication with slow
peripheral devices and for supporting tool interaction. It is
essential that processes running concurrently but sharing data have
adequate facilities for locking the data if integrity is to be
maintained. The rules for control and termination of processes and
for relationships between an activating and an activated process must
be defined. It should be possible to initiate a concurrent process
that is still dependent on the initiating process in some defined
sense, as well as initiating an entirely independent process.

4.19.2. Deadlock avoidance is an issue that must be addressed for the
higher level PTI facilities. This is an area for more research.

+.28. Mixed language working

4.28.1. A PT] should support the development of software in a variety
of languages. Tools suitable for import to a PTI may be also written
in a wide variety of languages. It is therefore important that a PTI is
not restricted to any specific language either for its tools or for its
applications. It must be possible for tools written in different
languages to work together.

4.20.2. Mixed language working within programs is desirable because
existing procedures may be available in a language different from the
main language in which a program is being written.(e.g. programs
written in Ada but using C procedures and vice versa). In the
implementation of large systems it is unlikely that a single language
will be suitable for everything. Implementors should be free to
choose the best language for the job, knowing that mixed language
working is supported.

4+.20.3. There may be problems if some of the data types supported by
different languages prove incompatible. If a facility is implemented
only in one language there may be constraints on its use, implied by
the implementation of the language and its associated loaders. For
example if dynamic linking is available to C programs but not to Ada
then it could be difficult to use an Ada facility with a C program and
still use the C dynamic loader. This problem may be alleviated by the
use of a common data representation.

.21, Uniformity

4.21.1. Problems arising from different data representations in
different language implementations could be significantly reduced by
the use of standard data representations for all the data types in the
supported languages, as well as standard representations for basic
data structures such as separately compiled units. It would help in
the support of language independent tools for debugging, linking and
other functions so often supported by a different tool for each
language.

26

.21.2. If different languages represent data differently there will
be problems for interworking of facilities written in different
languages as well as difficulty with language independent tools. If an
Ada compiler represents a vector of integers in one way and a L
compiler uses a different representation then there must be some
transformation from one to the other if facilities in the different
languages are to work together. {f tools are to communicate they need
a common understanding of any shared data. This would be greatly
assisted by the use of a common data representation. Although it
would almost certainly prove uneconomic to alter the data
representations associated with existing tools such as imported
conpilers, it would be possible to provide tools to transform the
wide variety of data representations used in current tools to the
target representation to enable language independent tools to work on
the results. This would reduce the number of necessary

transformations for inter-tool working from order(nz) to order(n).

&.22. Distribution.

4.22.1. Distribution of a PTl across a network of user workstations is
necessary. However this will pose problems for integrity and for
performance unless care is taken in the specification of facihties
which are known to be difficult in a distributed svstem. The
facilities specification should be careful only to require facilities
which are known to be feasible with current technologs.

4.22.2. Problems of sharing data between workstations with different
word length must be considered. A common system of data
representation on the network may assist in this.

4.22.3. Filestore integrity in a distributed system is difficult unless
a primitive is available for a distributed commit operation. If a
transaction mechanism is provided in which commital of a transaction
is to be atomic it must be clear what this means in terms of
simultaneously committing amendments to several physically separate
devices. If cyclic structures in a database may span several
physically separate volumes there mav be problems, should one
volume fail while the others commit the update. The problems of
detection of and recovery from filestore corruption caused by
hardware or software failure during a psuedo atomic update which is
not in fact physically atomic are considerable.

4.22.%. The PTI will need facilities to identify individual resources
in the physical network and to communicate with specific resources.

+.22.5. The PTI needs to be able to handle changes to the network of
physical resources, coping with failure of processors or devices
without compromising integrity and permitting new devices and
processors to be introduced into the network.

27

v 22.6. Thw PTI should be capable of operating usefully even if some
elements of the network of physical resources are unavailable. It
should therefore be possible to implement the PTI so that partitions
0t the network can be used in isolation.

& 22.7. Communication between resources requires a remote
procedure call facility (refs 25 and 26) in additon to a message
passing mechanism. There are problems with locking if a unit is
locked from a remote processor which then goes down. A resilient
lock mechanism across the network would help with this problem, for
exaimple as 1n SUN NFS (refs 27 and 28). Asynchronous distributed file
accesses would also be most desirable (e.g. as provided in Decnet).
Facilities are needed to implement a distributed read/modifyv/write
as an atomic operation,

v.22.8. It mav be desirable, in addition to providing a local
identification far processes and data, to provide a svstem wide
mechamism for s ntifving processes and data, independently of the
allocation to the phhsical resources in the network.

b.23. Esteblished technology

4.23.1. In order that the products meeting the PT! requirement can be
developed and used with minimum risk it is desirable that each
facility be based on a proven technologyv. The risk that a PTI product
will not perform as required will be significantly increased if an\
facility depends on unproven technology. In addition, the
acceptability of a product to potential users, (particularly to MoD
project managers), will be increased if the product is perceived to
be based on well established technology.

+.23.2. This requirement must not hinder research into new
technologies. Some desirable characteristics for PTIs have to be
omitted from the requirement because the technology to support them
is not yet established. For example, there is no requirement to
provide a distributed database because this is not yet possible using
proven technology. As shown earlier the requirement to use
established technology also implies the need for a kernel of low
level facilities.

&.2%. Technological compatibility

Where standards have already been established, for example the IS0
and ANS! standards, they should be adopted. The standards are
established technology and import of tools employing existing
standards is desirable. Where standards are under development (for
example X-windows, (refs 15 and 38)) the PTI should be designed as
far as possible so as not to preclude their support in due course. The
facilities specification should indicate which standards are to be
supported and by what facilities.

28

&.25. PTI validation

4.25.1. It is important that the specification of a FTl be complete and
unambiguous so that users can rely on the same interpretation of the
specification in the different implementations. It is unlikely that a
complete and consistent implementation specification will be
achieved in the absence of a formal specification.

4+.25.2. Each implementation of the PT! will need to be validated to
check that it fully conforms to the specification. Such work will be
hampered if there are ambiguities and gaps in the specification.
Confidence in the validation process will be enhanced if a validation
suite, based on a formal implementation specification of the PTI, is
used to test individual implementations for conformance to the
specification.

4.25.3. If users are to rely on all implementations behaving in the
same way, then the implementation specification of a PTl should
include not only the syntax for the various procedure calls in the
selected language or languages but also the semantics of the
interface. ’

4.25.4. A PTI may be implemented on a variety of different
architectures and it should not be up to the implementors to make
arbitrary or implementation dependent decisions. In the event that
ambiguities or omissions are discovered in the PTl implementation
specification, every effort should be made to enhance the
specification in step with implementation decisions and to clarify the
intended or correct interpretation of the specification.

&.26. Kernel facilities

4.26.1. It has been shown that many of the PTI requirements demand
the provision of a kernel giving a good mapping to the underiving
hardware. The quality of the kernel is central to the success of am
PTI and the aim should be to keep it simple and as small as possible.
It should include only those facilities without which an efficient and
secure system cannot be written. All the higher level facilities must
be implementable in terms of kernel facilities. The set of facilities
needed in the kernel needs careful consideration. The syntax and
semantics of the kernel facilities should aim to be machine and
operating system independent. Any unavoidable dependencies should
be isolated and parameter controlled. Some of the facilities needed
are discussed below. This is a difficult area and the authors make no
claim that the list is complete. It is intended to indicate the type of
facilities to be considered.

4.26.2. For tool conversion the kernel needs to provide facilities
analogous to those provided by current operating systems, although
such facilities should be provided in a machine independent way as
far as possible.

29

+.26.3. The need for safe and efficient interaction with filestore
probably implies the need for the facilities to implement an efficient
commit operation, support for the control of the mapping of data onto
filestore and for controlling the order of interactions with filestore
{necessary for the implementation of atomic operations on filestore;
the commit operation must be sure that all the operations to be
committed have completed before completing the commit) . Facilities
for inapping data onto filestore will also support fine granularity of
data, both for efficient use of fine grained data structures and to
provide for flexibility of data typing of values held on filestore.

4.26.4. One possibility is a facility to create directly addressable
files and access them directly (without buffering)} with random
addressing. Constraints on contiquity and location of files, and a
facility to extend a file would be useful additions.

4.26.5. Access control facilities are needed to guard against both
malicious and accidental inisuse. Protection against maliclous
interference is mandatory at least at the Jevel of objects such as
databases, database partitions, files and directories; these would
probably be provided in terms of passwords and checks on
appropriate use. The need to create and handle fine-grained database
structures involving links between small values within these larqger
constructs implies a need for a system wide mechanism for creating,
and for retaining on filestore, pointers to individual filestore
values. ldeally, these pointers should be afforded the same deyree of
protection as the grosser structures; howewver this is unlikely to be
achievable without an overall capability mechanism or system-wide
type structure. It would probably be sufficient to guard against
accidental misuse by making the pointers difficult to forge, provided
that they cannot point outside some larger value which is protected
against malice. The pointers could hold other information about the
value to assist in access control, such as the type of use to which
the value may be put (read/write or execute) and the size of the
value.

4.26.6. Facilities for unanticipated highly interactive use, for
passing data between concurrent processes and for sharing program
code without privilege all imply a need for operations permitting the
sharing of mainstore between processes. Interactive use also implies
a need to perform dynamic linking.

4.26.7. Concurrent processing implies a need for monitors or other
facilities for locking shared wvalues, both in mainstore and in
filestore. For efficiency locking must be possible on fine grained
values, for example at the record rather than the file level.
Multi-tasking requires kernel facilities for the initiation and control
of both synchronous and asynchronous concurrent tasks, facilities for
task synchronijsation and for communication between tasks.

38

4.26.8. Distributed systems require facilities for remote procedure
calls, message passing between processors and between tasks running
concurrently in a single processor and for a resilient locking
mechanism.

+.26.9. Interaction with other devices requires facilities both for
synchronous and asynchronous devices.

31

- ——— -

5. Conclusion

S.1. This report gives a requirements specification for a portable
public tools interface. The rationale not only discusses the reasons
for the individual requirements but indicates that the requirements
can largely be met. Although no one operating system or PTI currently
satisfies the whole requirement, many individual bits of the
requirement are demonstrated in different exisiting svstems. It is,
perhaps, a surprising conclusion that this requirement is not
necessarily over ambitious.

5.2. One of the major conclusions must be the importance of
establishing the right basis for a PTl. The low level facilities are
crucial because everything else, the importing of existing tools, the
performance and integrity both of tools and of the underlying system
and the productivity of interactive users all rely on provision of an
adequate core of low level facilities. Higher levels can be developed
only if adequate kernel facilities are accessible.

5.3. Other major conclusions are the importance of a common data
representation across the supported languages and the need for
strong data typing. A common data representation helps in the
solution of a variety of problems such as data and tool portability,
interactive working and the provision of common tools for a variet\
of different lanquages. Strong data typing is essential for the safe
composition of tools, for robustness and extensibility.

5.4. It is hoped that this requirement will be influential 1n shaping
the requirement and facilities specifications for future PTI
developments. The authors suggest that it could also be ot use In
evaluating and compa ng PTI implementations. If PTls are to be
compared it is desirable that thev al! be measured auainst the same
yvardstick. This requirement would form a suitable basis for such a
yvardstick. Existing and proposed PTls such as PCTE, PCTE+, CAIS (refs
18,22 and 23) and TentS5 (ref 29) should be measured against tius
requirement.

6. Acknowledgements

The authors wish to acknowledye their indebtedness to the RAC and to
the draft EURAC documents in drawing w the requirements.
Discussions with the IEPG study team responsii for the EURAC and
consideration of PCTE1l.% has influenced the ¢ king. The authors
also wish to acknowledge the help nf their colleaques at RSRE, and
the influence of current work on the Flex PSE and the TeniS abstract
machine on this work.

32

R —

7. References

Ref 1. "On the security of Unix~ by D.Ritchie, Bell Labs.

Ref 2. “Unix operating system security” by F.T.Grampp and R.H.Morris

Bell Labs Technical Journal, Vol63 no8 Oct 84
Ref 3. DoD Requirements and Design Criteria for the Common APSE
Interface set . & Oct 1986

Ref &. PCTE Functional Specifications &th edition

Ref 5. "A Review of the 1986 UniForm Panel: A secure Unix system
and implications on CAIS and RAC" by H.Fischer Feb 86.

Ref 6. "A critique of Unix" by G.Blair, J.R.Malone and J.A.Mariani,
Software Practice and Experience, Vol 15 no 12, Dec 85.

Ref 7. ~Adam: an abstract database machine” by N.E.Peeling,

J.D.Morison and E.V.Whiting. RSRE Report 84807, May 8.

Ref 8. "A Database approach to design data management and
programming support for Ella, A high level HDDL -
by N.E.Peeling and J.D.Morison, Proc. Computer Hardware
Description Languages and their Applications, Tokyo, Japan 85

Ref 9. CAD Interface Standardisation Project (CISP) (Copyright 1984
with Crown, British Telecommunications, Ferranti Computer
Systems, Ferranti Electronics Ltd, GEC PLC, ICL, Plessey
Research Ltd. Racal Microelectronics Ltd, STL Ltd)

Ref 18. "Extending data typing beyond the bounds of programming
Janguages ” by M.Stanley, RSRE Memorandum 3878 1985

Ref 11. “Integrity and the Flex PSE" by M.Stanley,

RSRE Memorandum 3915 1985

Ref 12. "An evaluation of the Flex PSE” by M.Stanley
RSRE Report 86803 1986

Ref 13. "Reflections on some recent widespread computer break-ins”
by B.Reid Communications of the ACM, Vol 308 No. 2,Feb 87.

Ref 14. "Prototyping a project master database for software
engineering environments” by M.H.Penedo, TRW Inc. 2nd ACM
SIGSOFT /SIGPLAN software engineering symposium on Practical
software development environments, Dec 86.

Ref 15 "Window system architectures -an overview” by P.Fritzson,

Tutorial on Software Development Environments, Sweden, Nov 86.

Ref 316. "SDS Users Handbook " by SSL

Ref 17."User assessment of Software tools, SDS. Report no 1 on

Software Development System” by Scicon Ltd under contract to Dol,
Nov 1982

Ref 18. Proposed MIL-STD-CAIS (31 Jan 85)

Ref 19. "Application Briefs“ Computer Graphics World 8/82

Ref 20 "NS: An integrated symbolic design system” by J.Cherry,
N.Mayle, C.Baker, H.Minsky, K Reti and N.Weste, Proc. IFIP
International Conference, VLS! 85, Tokyo Aug 1985.

Ref 21 "The Siclops silicon compiler” by T.Hedges, K.Slater, G.Clow
end T.Whitney, Proc. IEEE International Conference on
Circuits and Computers, ICCC 82, New York Sept 1882.

Ref 22 "Recent developments in tool support interfaces. CAIS and
PCTE" by T.Lyons and M.D.Tedd, 6th Ada UK Conference,

33

York Jan 1987.

Ref 23 "Technical overview of PCTE and CAIS” by T.Lyons and
M.D.Tedd, 6th Ada UK Conference, York Jan 1987.

Ref 24 "On understanding types, data abstraction and polymorphism”
by L.Cardelli and P.Wegner, ACM Computing Surveys Dec 85,
Vol17 No &

Ref 25 "Implementing remote procedure calls” by A.D.Birrell and
B.J.Nelson, ACM Transactions on Computer Systems Feb B4,

Vol2 No 1.

Ref 26. "Heterogeneous computing environments: report on the ACM
SIGOPS workshop on accomodating heterogeneity” by D.Notkin,
N.Hutchinson, J.Sanislo & M.Schwartz, Communications of the
ACM, Feb 1987, Vol 38 No 2.

Ref 27. "Status monitor provides Network Locking Service for NFS*
by JoMei Chang, Sun Microsystems report 1985

Ref 28. "Design and implementation of the SUN Network File System”
by R.Sandberg, D.Goldberg, S.Kleiman, D.Walsh and B.Lyon
Sun Microsystems report 1986

Ref 29. "Ten15: an overview"” by P.W. Core and J.M.Foster “ RSRE

Memorandum 3977 1986.

Ref 38. "Xlib -C language X Interface, Protocol Version 18" by
J.Gettys, R.Newman and T.Della Fera, MIT Project Athena, 1986.

Ref 31 "The Siclops silicon compiler” by T.Hedges, K.Slater, G Clow
and T.Whitney, Proc. IFIP International Conference, VLSI 85,
Tokyo Aug 1985.

8. Glossary
Ada A trademark of the Ada Joint Program Office.

APSE Ada Project Support Environment

AT&T the developers of Unix

C A programming language.

CAIS Common APSE Interface Set -tools interface set for Ada project

support environments

CNAD Committe of National Armament Directors

Dynamic linking -the ability to load modules at run time rather than
running a statically linked system that combines separately
compiled program components into an amorphous code image.

EURAC European Requirements and Design Criteria for a public
tools interface set

George 3 -operating system for the ICL 1980 series of computers.

IEPG Independent European Programme Group - a European/NATO
industry and government group fostering collaboration on
European defence work

IPR Intellectual Property Rights

NRAC NATO Requirements and Design Criteria for a public tools
interface set

OMS Object Management System: an entity relationship database
which forms the core of PCTE.

PACT a project under a contract from CEC ESPRIT programme to

3

L

develop tools for PCTE.

PCTE A Basis for a Portable Common Tools Environment :
a tools interface set developed by Bull SA;

The General Eiectric Co. plc;ICL; Nixdorf Computer AG;
Olivetti SPAand Siemens AG under a contract from
CEC ESPRIT programme.

PCTE 1.4 Version 1.% of the PCTE functional specification

Posix- Portable Operating System, a trademark of the US Institute
of Electronic and Electrical Engineers (IEEE). Posix is being
promoted in the USA as a possible standard. It is a multi-user,
multi-tasking operating system based on Unix V, release 3.8.

PTI Public Tools Interface

RAC DoD Requirements and Design Criteria for the Common APSE
Interface set

SD Systems Designers plc.

SDS Software Development System- a database system developed
jointly by RSRE and SSL for use in development of large
software systems.

SSL Software Sciences Ltd.

TSGCEE SWG on Ada/APSE Tri Service Group on Communications and
Electronic Equipment, Special Working Group on Ada Programming
Support Environments, a NATO study group set up by the TSGCEE.

Unix A trademark of Bell Laboratories, AT&T

Unix BSDk.2 Unix Version &.2 from the University of California at
Berkeley.

Unix V. Version V of Unix.

VDM The Vienna Development Method- a notation for writing formal
srecifications

X/0PEN Portability Guide - a guide published by the X/OPEN

group of European companies on the standardisation
of Unix for business users, published 1985 by North Holland,
Elsevier. ISBN B-444-87833-4

35

- a R R B e
R 3l smaed shouid contals aniy urciassified ‘nfcrmatien, [T it Vs nmecessary o encter
FREREES A, tre tox rofcerned must 28 marxag fo fndizate ‘re ciassificaticn eg (R) (2} ar O
DT fafarencs tF wnsen) | 2, Criginator's Refersnce |3, Agency Reference I &, Report Security]
) 1 fflcatos
EZJ «?g 7: O A?— 1 ,) { Cl Classificatien
Soolrpnatiets lnae €, Originator (Corporate Author) Name and Lecation
el | QCRE L AINT ANDREWS RORD I
.- . : C
PTTTS L MALUERN W ORCS R 14 R3PS i
‘ Ta. lniniceeng ajenzy's Sa. Soonsaring Agency (Contract Authority) Name and Lrcation E
. Tide 4 xacwn) N '
|
: |
J

nonws Pue tos L \
‘ ALURALE ML e LD

'u\hfjuuﬁ

“fur Softwadt

~

a. T'tie tn fcrai;n Language (in the case of translations)

T3, Sresanted 3t (far zonerence dapers) itle,

place and date of conferance

|
|
!
l
i
l

N SN

5. Autrae 1 Sur~ame, intttais §{a) Author 2 5{5) Authors 3,4.., 10. Data e ref.
sTLEt M PEELING NEICURRIE [F 11987 09] 25
Tjjl lamtract hunoer 12. Pertod 13, Prelect ' ’ 14, Other Refersnce
|

|

S, Disteiratisn statement

l

R .
Tescrizters {or xayworgs)

continug on separate piece of paser

Abstract

Ry tEXE

END

DATE
FILMED

